56 research outputs found

    Distributed allocation of mobile sensing swarms in gyre flows

    Get PDF
    We address the synthesis of distributed control policies to enable a swarm of homogeneous mobile sensors to maintain a desired spatial distribution in a geophysical flow environment, or workspace. In this article, we assume the mobile sensors (or robots) have a "map" of the environment denoting the locations of the Lagrangian coherent structures or LCS boundaries. Based on this information, we design agent-level hybrid control policies that leverage the surrounding fluid dynamics and inherent environmental noise to enable the team to maintain a desired distribution in the workspace. We establish the stability properties of the ensemble dynamics of the distributed control policies. Since realistic quasi-geostrophic ocean models predict double-gyre flow solutions, we use a wind-driven multi-gyre flow model to verify the feasibility of the proposed distributed control strategy and compare the proposed control strategy with a baseline deterministic allocation strategy. Lastly, we validate the control strategy using actual flow data obtained by our coherent structure experimental testbed.Comment: 10 pages, 14 Figures, added reference

    LEARNEST: LEARNing Enhanced Model-based State ESTimation for Robots using Knowledge-based Neural Ordinary Differential Equations

    Full text link
    State estimation is an important aspect in many robotics applications. In this work, we consider the task of obtaining accurate state estimates for robotic systems by enhancing the dynamics model used in state estimation algorithms. Existing frameworks such as moving horizon estimation (MHE) and the unscented Kalman filter (UKF) provide the flexibility to incorporate nonlinear dynamics and measurement models. However, this implies that the dynamics model within these algorithms has to be sufficiently accurate in order to warrant the accuracy of the state estimates. To enhance the dynamics models and improve the estimation accuracy, we utilize a deep learning framework known as knowledge-based neural ordinary differential equations (KNODEs). The KNODE framework embeds prior knowledge into the training procedure and synthesizes an accurate hybrid model by fusing a prior first-principles model with a neural ordinary differential equation (NODE) model. In our proposed LEARNEST framework, we integrate the data-driven model into two novel model-based state estimation algorithms, which are denoted as KNODE-MHE and KNODE-UKF. These two algorithms are compared against their conventional counterparts across a number of robotic applications; state estimation for a cartpole system using partial measurements, localization for a ground robot, as well as state estimation for a quadrotor. Through simulations and tests using real-world experimental data, we demonstrate the versatility and efficacy of the proposed learning-enhanced state estimation framework.Comment: 7 pages, 3 figures, 1 tabl

    Learning-enhanced Nonlinear Model Predictive Control using Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles

    Full text link
    Nonlinear model predictive control (MPC) is a flexible and increasingly popular framework used to synthesize feedback control strategies that can satisfy both state and control input constraints. In this framework, an optimization problem, subjected to a set of dynamics constraints characterized by a nonlinear dynamics model, is solved at each time step. Despite its versatility, the performance of nonlinear MPC often depends on the accuracy of the dynamics model. In this work, we leverage deep learning tools, namely knowledge-based neural ordinary differential equations (KNODE) and deep ensembles, to improve the prediction accuracy of this model. In particular, we learn an ensemble of KNODE models, which we refer to as the KNODE ensemble, to obtain an accurate prediction of the true system dynamics. This learned model is then integrated into a novel learning-enhanced nonlinear MPC framework. We provide sufficient conditions that guarantees asymptotic stability of the closed-loop system and show that these conditions can be implemented in practice. We show that the KNODE ensemble provides more accurate predictions and illustrate the efficacy and closed-loop performance of the proposed nonlinear MPC framework using two case studies.Comment: 16 pages, 2 figures, includes Appendi

    Online Estimation of the Koopman Operator Using Fourier Features

    Full text link
    Transfer operators offer linear representations and global, physically meaningful features of nonlinear dynamical systems. Discovering transfer operators, such as the Koopman operator, require careful crafted dictionaries of observables, acting on states of the dynamical system. This is ad hoc and requires the full dataset for evaluation. In this paper, we offer an optimization scheme to allow joint learning of the observables and Koopman operator with online data. Our results show we are able to reconstruct the evolution and represent the global features of complex dynamical systems.Comment: Accepted to 5th L4DC Conference. Proceedings of The 5th Annual Learning for Dynamics and Control Conference, PMLR 211:1271-1283, 2023. 13 pages 6 figure

    A Quadratic Programming approach for coordinating multi-AGV systems

    Get PDF
    This paper presents an optimization strategy to coordinate multiple Autonomous Guided Vehicles (AGVs) on ad-hoc pre-defined roadmaps used in logistic operations in industrial applications. Specifically, the objective is to maximize traffic throughput of AGVs navigating in an automated warehouse by minimizing the time AGVs spend negotiating complex traffic patterns to avoid collisions with other AGVs. In this work, the coordination problem is posed as a Quadratic Programming (QP) problem where the optimization is performed in a centralized manner. The optimality of the coordination strategy is established and the feasibility of the strategy is validated in simulation for different scenarios and for real industrial environments. The performance of the proposed strategy is then compared with a decentralized coordination strategy which relies on local negotiations for shared resources. The results show that the proposed coordination strategy successfully maximizes vehicle throughout and significantly minimizes the time vehicles spend negotiating traffic under different scenarios

    Optimized Stochastic Policies for Task Allocation in Swarms of Robots

    Get PDF
    We present a scalable approach to dynamically allocating a swarm of homogeneous robots to multiple tasks, which are to be performed in parallel, following a desired distribution. We employ a decentralized strategy that requires no communication among robots. It is based on the development of a continuous abstraction of the swarm obtained by modeling population fractions and defining the task allocation problem as the selection of rates of robot ingress and egress to and from each task. These rates are used to determine probabilities that define stochastic control policies for individual robots, which, in turn, produce the desired collective behavior. We address the problem of computing rates to achieve fast redistribution of the swarm subject to constraint(s) on switching between tasks at equilibrium. We present several formulations of this optimization problem that vary in the precedence constraints between tasks and in their dependence on the initial robot distribution. We use each formulation to optimize the rates for a scenario with four tasks and compare the resulting control policies using a simulation in which 250 robots redistribute themselves among four buildings to survey the perimeters

    Online Dynamics Learning for Predictive Control with an Application to Aerial Robots

    Full text link
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Even though prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. After the model is trained to a desired accuracy, it is then deployed in a model predictive controller. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor robot, and verify the framework in both simulations and physical experiments. Results show that the proposed approach is able to account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance.Comment: 8 pages, 4 figure
    • …
    corecore